Su ve Çevre Teknolojileri Dergisi 205. Sayı (Ağustos 2025)

52 SU VE ÇEVRE TEKNOLOJİLERİ • 08 / 2025 MAKALE rın geniş çapta benimsenmesi, membran malzemelerinin geliştirilmesi, membran verimliliğinin artırılması, üretim maliyetlerinin azaltılması ve ölçeklenebilirliğin sağlanması ile mümkün olacaktır. Bu hedeflere ulaşmak için sürekli araştırma, yenilik ve akademi, endüstri ve politika yapıcılar arasında işbirliği gereklidir. Sürdürülebilir gaz ayırma membranları, yalnızca teknolojik bir ilerleme değil, aynı zamanda daha sürdürülebilir ve sorumlu bir geleceğe yönelik stratejik bir değişimdir. Bu teknolojilerin uygulanması, enerji verimliliği, maliyet azaltımı ve çevresel sürdürülebilirlik açısından endüstrilere önemli avantajlar sunmaktadır. Enerji ekonomisi ve düşük karbon ayak izi dikkate alınarak, endüstriyel gaz ayırma ve saflaştırma işlemlerinin sürdürülebilir membran bazlı teknolojiler kullanılarak yapılması gerekmektedir. n KAYNAKLAR - Biniek, K., Henderson, K., Rogers, M., & Santoni, G. (2020, June). Driving CO2 emissions to zero (and beyond) with carbon capture, use, and storage. McKinsey Quarterly. - Engel, H., Hamilton, A., Hieronimus, S., Nauclér, T., Fine, D., Pinner, D., Rogers, M., Bertreau, S., Cooper, P., & Leger, S. (2020). How a post-pandemic stimulus can both create jobs and help the climate. McKinsey & Company. - Ghanbari, P., & Nabipour, M. (2021). Investigating Membranes Used in Gas Separation in Industry. Progress in Chemical and Biochemical Research Journal homepage: Gas Progress in Chemical and Biochemical Research, 2021(3), 254-267. https://doi.org/10.22034/ pcbr.2021.277405.1180 - Godin, J., Liu, W., Ren, S., & Xu, C. C. (2021). Advances in recovery and utilization of carbon dioxide: A brief review. Journal of Environmental Chemical Engineering (C. 9, Sayı 4). Elsevier Ltd. https://doi.org/10.1016/j.jece.2021.105644 Liu, Y., Li, N., Cui, X., Yan, W., Su, J., & Jin, L. (2022). A Review on the Morphology and Material Properties of the Gas Separation Membrane: Molecular Simulation. Membranes (C. 12, Sayı 12). MDPI. https://doi.org/10.3390/ membranes12121274 - Malabi Eberhardt, L. C., Kuittinen, M., Häkkinen, T., Moinel, C., Nibel, S., & Birgisdottir, H. (2023). Carbon handprint–a review of potential climate benefits of buildings. Building Research and Information. https://doi. org/10.1080/09613218.20 23.2266020 - Shimekit, B., & Mukhtar, H. (2012). Natural Gas Purification Technologies - Major Advances for CO2 Separation and Future Directions. InTech. doi: 10.5772/38656 - Shindo, R., & Nagai, K. (2013). Gas Separation Membranes. Içinde Encyclopedia of Polymeric Nanomaterials (ss. 1-8). Springer Berlin Heidel berg. https://doi.org/10.1007/978-3642-36199- 9_134-1 - Sidhikku Kandath Valappil, R., Ghasem, N., & Al-Marzouqi, M. (2021). Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. Journal of Industrial and Engineering Chemistry, 98, 103- 129. https://doi. org/10.1016/J.JIEC.2021.03.030 Sridhar, S., & Bhargava, S. (2014). Membrane-based Gas Separation: Principle, Applications and Future Potential. https://www. researchgate. net/publication/265295121 - Taghvaie Nakhjiri, A., Heydarinasab, A., Bakhtiari, O., & Mohammadi, T. (2020). Numerical simulation of CO2/ H2S simultaneous removal from natural gas using potassium carbonate aqueous solution in hollow fiber membrane contactor. Journal of Environmental Chemical Engineering, 8(5). https://doi.org/10.1016/j. jece.2020.104130 - Yong, W. F., & Zhang, H. (2021). Recent advances in polymer blend membranes for gas separation and pervaporation. Progress in Materials Science (C. 116). Elsevier Ltd. https://doi. org/10.1016/j.pmatsci.2020.100713 - Baker, R. W., & Low, B. T. (2014). Gas Separation Membrane Materials: A Perspective. Macromolecules, 47(20), 6999– 7013. https:// doi.org/10.1021/ma501488s - Bernardo, P., Drioli, E., & Golemme, G. (2009). Membrane Gas Separation: A Review/State of the Art. Industrial & Engineering Chemistry Research, 48(10), 4638–4663. https://doi.org/10.1021/ie8019032 - Liang, C. Z., Chung, T. S., & Lai, J. Y. (2019). A review of polymeric composite membranes for gas separation and energy production. Progress in Polymer Science, 97, 101141. https://doi. org/10.1016/j.progpolymsci.2019.06.001 - Murali, R. S., Sankarshana, T., & Sridhar, S. (2013). Air Separation by Polymer-based Membrane - Technology. Separation & Purification Reviews, 42(2), 130–186. https://doi.org/10.1080/1542211 9.2012.686000 - Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Ismail, A. F., & Matsuura, T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 39(5), 817–861. https://doi.org/10.1016/j. progpolymsci.2014.01.003 - Xu, Z., Croft, Z. L., Guo, D., Cao, K., & Liu, G. (2021). Recent development of polyimides: Synthesis, processing, and application in gas separation. Journal of Polymer Science, 59(11), 943–962. https://doi.org/10.1002/pol.20210001 - Araújo, O. de Q. F., & de Medeiros, J. L. (2017). Carbon capture and storage technologies: present scenario and drivers of innovation. Current Opinion in Chemical Engineering (C. 17, ss. 22- 34). Elsevier Ltd. https://doi. org/10.1016/j.coche.2017.05.004 - Madejski, P., Chmiel, K., Subramanian, N., & Kuś, T. (2022). Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies (C. 15, Sayı 3). MDPI. https://doi. org/10.3390/ en15030887 - Shah, S., Shah, M., Shah, A., & Shah, M. (2020). Evolution in the membrane-based materials and comprehensive review on carbon capture and storage in industries. Emergent Materials, 3(1), 33-44. - Yuan, Y., You, H., & Ricardez-Sandoval, L. (2019). Recent advances on first-principles modeling for the design of materials in CO2 capture technologies. Chinese Journal of Chemical Engineering (C. 27, Sayı 7, ss. 1554-1565).

RkJQdWJsaXNoZXIy MTcyMTY=